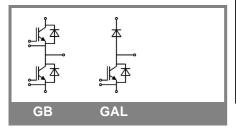


SEMITRANS[®] 3

IGBT Modules


SKM 150GB123D SKM 150GAL123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)

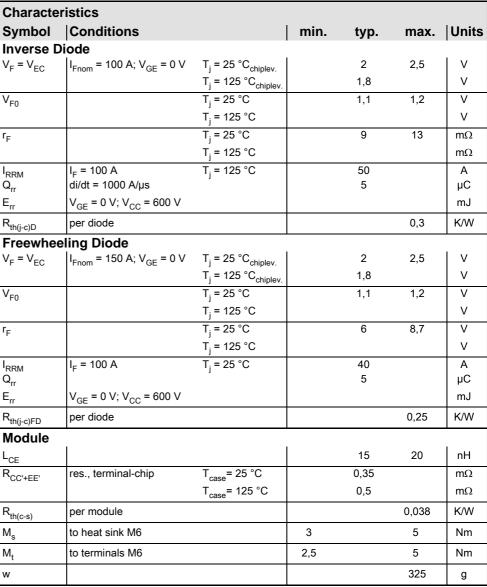
Typical Applications*

- AC inverter drives
- UPS

Absolut	te Maximum Ratings	T _c =	25 °C, unless otherwise	specified
Symbol	Conditions		Values	Units
IGBT				
V_{CES}	T _j = 25 °C T _i = 150 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	150	Α
		T _{case} = 80 °C	110	Α
I_{CRM}	I _{CRM} =2xI _{Cnom}		200	Α
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs
Inverse	Diode			
I_{F}	T _j = 150 °C	T_{case} = 25 °C	150	Α
		T _{case} = 80 °C	100	Α
I_{FRM}	I _{FRM} =2xI _{Fnom}		200	Α
I _{FSM}	$t_p = 10 \text{ ms}; \sin.$	T _j = 150 °C	1100	Α
Freewh	eeling Diode			
I_{F}	T _j = 150 °C	T_{case} = 25 °C	200	Α
		T_{case} = 80 °C	135	Α
I _{FRM}			300	Α
I _{FSM}	$t_p = 10 \text{ ms}; \sin.$	T _j = 150 °C	1440	Α
Module				
$I_{t(RMS)}$			500	Α
T_{vj}			- 40 + 150	°C
T _{stg}			-40 + 125	°C
V _{isol}	AC, 1 min.		2500	V

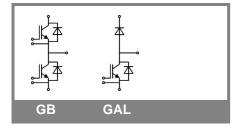
Characteristics $T_c = 2$			= 25 °C, ur	25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA	
		T _j = 125 °C				mA	
V _{CE0}		T _j = 25 °C		1,4	1,6	V	
		T _j = 125 °C		1,6	1,8	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11	14	mΩ	
		T _j = 125°C		15	19	mΩ	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	T _j = °C _{chiplev} .		2,5	3	V	
C _{ies}				6,5	8,5	nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1	1,5	nF	
C _{res}				0,5	0,6	nF	
Q_G	V _{GE} = -8V - +20V			1000		nC	
R _{Gint}	T _j = °C			2,5		Ω	
t _{d(on)}				160	320	ns	
t _r	R_{Gon} = 6,8 Ω	V _{CC} = 600V		80	160	ns	
E _{on}		I _C = 100A		13		mJ	
t _{d(off)}	$R_{Goff} = 6.8 \Omega$	T _j = 125 °C		400	520	ns	
t _f		V _{GE} = ± 15V		70	100	ns	
E _{off}				11		mJ	
$R_{th(j-c)}$	per IGBT				0,15	K/W	

IGBT Modules


SKM 150GB123D SKM 150GAL123D

Features

- MOS input (voltage controlled)
- . N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- · Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)

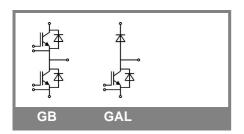

Typical Applications*

- · AC inverter drives
- UPS

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

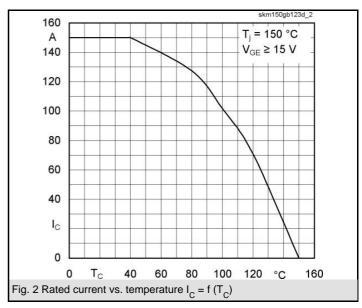
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

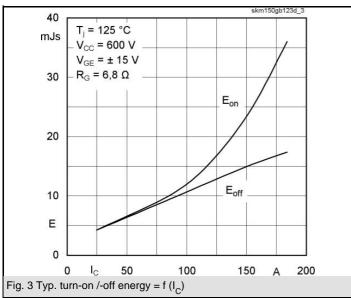
IGBT Modules

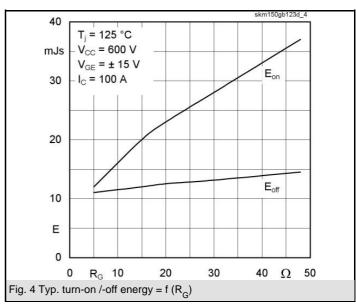

SKM 150GB123D SKM 150GAL123D

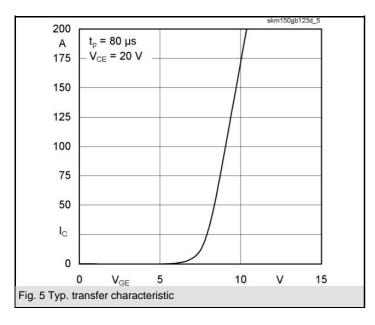
Featu	res
--------------	-----

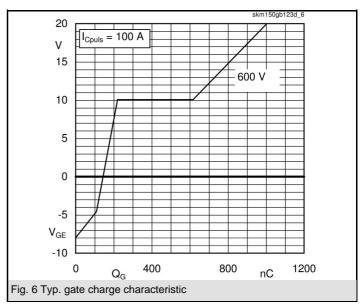
- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)

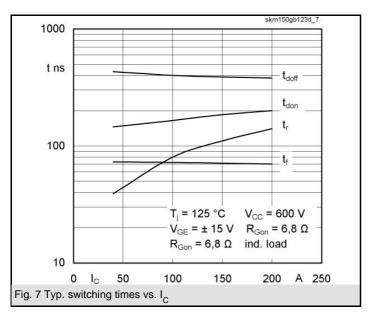

Typical Applications*

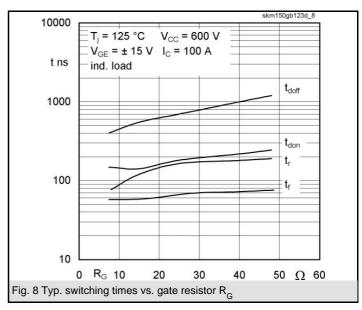

- AC inverter drives
- UPS

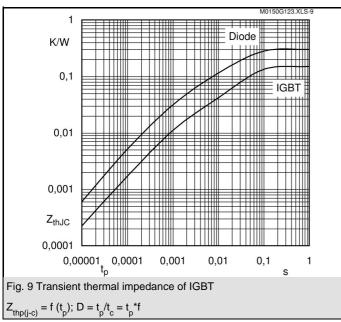


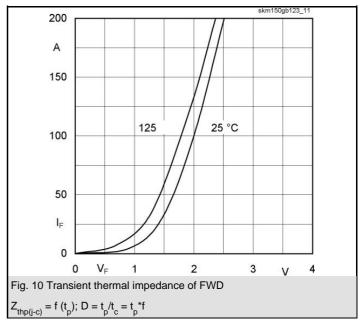

Z _{th} Symbol	Conditions	Values	Units			
Z th(j-c)l	i = 1	105	mk/W			
R _i	i = 2	35	mk/W			
R _i R _i	i = 3	8	mk/W			
R _i	i = 4	2	mk/W			
tau _i	i = 1	0,03	s			
tau _i	i = 2	0,03	s			
tau _i	i = 3	0,0014	s			
tau _i	i = 4	0,0001	s			
Z _{th(j-c)D}						
R _i	i = 1	210	mk/W			
Ri	i = 2	70	mk/W			
R_i	i = 3	16	mk/W			
R _i	i = 4	4	mk/W			
tau _i	i = 1	0,0623	s			
tau _i	i = 2	0,0083	s			
tau _i	i = 3	0,003	s			
tau _i	i = 4	0,0002	s			

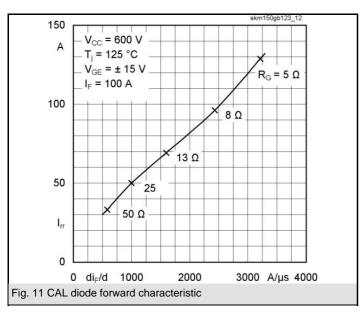


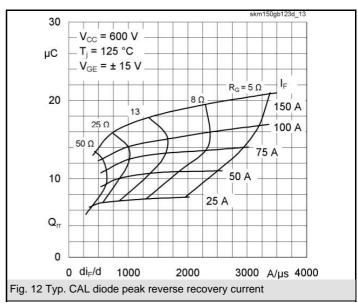


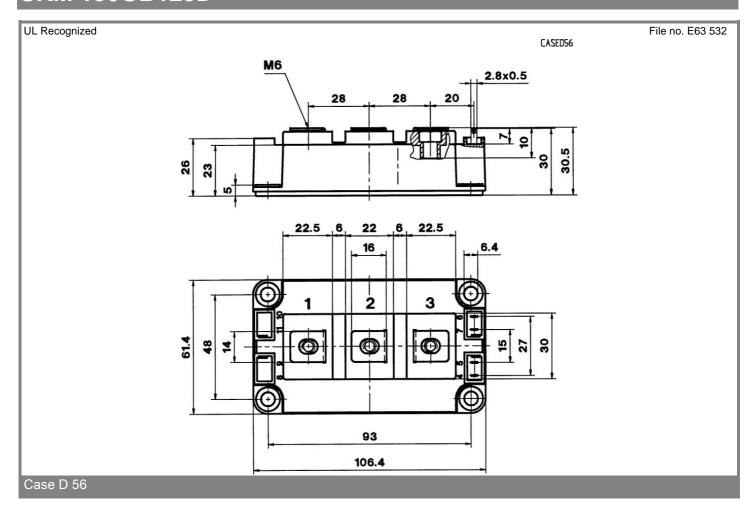


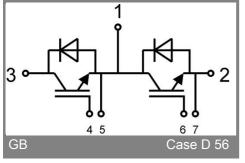


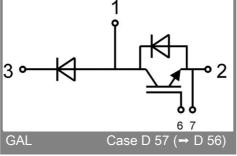












6 11-09-2006 RAA © by SEMIKRON